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Abstract

The scattering problem for a single ellipsoidal piezoelectric inclusion embedded in piezoelectric medium is investi-
gated. Based on the polarization method, the extended displacements are expressed in terms of integral equations,
whose kernels are obtained from the Green�s functions of homogenous matrix. In this paper, the 3D dynamic Green�s
functions are derived by means of the Radon transform technique. To illustrate the use of the equations, scattering by a
piezoelectric, ellipsoidal inhomogeneity in a piezoelectric medium is considered in the low frequency and an asymptotic
formula for this scattering cross-section is obtained. Numerical results of the scattering cross-sections are carried out for
a spheroidal BaTiO3-inclusion in a PZT-5H-matrix.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

For recent two decades, various types of piezoelectric composites have been developed and widely ap-
plied in many engineering applications, for example, sonar projector, underwater acoustic and medical
ultrasonic imaging, etc. In general, comprising two or more constituents, piezoelectric composites take
advantage of each constituent and have superior electromechanical coupling characteristics compared to
homogenous piezoelectric material. These materials have been fabricated in many forms including the sec-
ond phase piezoelectric inclusions embedded in a polymer matrix and polymer inclusions in a solid piezo-
electric ceramic matrix. The second-phase piezoelectric inclusions in the composites can be continuous
fibers, short fibers, holes, voids or dispersed quasispherical particles. The studies on the physical and
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mechanical properties of such materials become very important in engineering. By use of different methods,
many researchers have adequately investigated the problems for the piezoelectric composite containing
inclusions.

Deeg (1980) extended the classical method of Eshelby (1957) to the problem of an ellipsoidal inclusion
embedded in piezoelectric matrix. In case of ellipsoidal inclusion and in the limiting case of elliptical crack,
Wang (1992a,b) represented the coupled electroelastic fields in integral form, whose kernels were the
Green�s functions, and obtained the analytical solutions for the coupled elastic and electric field inside
the inclusion and just outside the inclusion. As a limiting case of an ellipsoidal inclusion, Dunn and Taya
(1993) obtained close-form Eshelby tensor for elliptic cylindrical, circular cylindrical and ribbon-like inclu-
sion. Kuo and Huang (1997) considered the problems of piezoelectric composites containing spatially ori-
ented inclusions. The explicit expressions for the electrostatic tensors analogous to the Eshelby tensors were
obtained, and with these tensors, the analytical expressions for the electroelastic fields had been derived.

All the results mentioned above are static solutions. Unlike static problems, relatively little work has
been done regarding on the wave propagation in the inhomogeneous piezoelectric solid. Maurizio Romeo
(2002) considered the propagation of transient shear horizontal waves in the piezoelectric layer with free
boundaries within a time domain approach, and using the separation of space variables, the problem for
the Laplace transforms of electromechanical fields was solved. Levin et al. (2002) investigated the propa-
gation of electroacoustic waves in a piezoelectric transversely isotropic medium containing a single inhomo-
geneity fiber. By means of Green�s function approach, a system of coupled integral equations for the
electroelastic field was solved in closed form in the long-wave approximation. The objective of the present
paper is to provide the general solutions for the electroelastic field for the scattering problem by a single
ellipsoidal piezoelectric inclusion embedded in a piezoelectric medium. The present method is based on
the polarization approach, which has been adopted by Willis (1980) to deal with the scattering problem
in anistropic elastic body.

The paper is arranged as follows: in Section 2, the integral equations for the electroelastic dynamic prob-
lem are derived for the inhomogeneous piezoelectric body. The kernels of the integral equations are ob-
tained from the Green�s function of the �comparison body�, which is identified with the matrix in
scattering problem. In Section 3, by the use of the Radon transform method, three-dimensional dynamic
Green�s functions for the homogeneous piezoelectric solids are obtained. The Green�s functions can be rep-
resented as a summation of a regular dynamic term and a singular static term. In Section 4, the expression
for the scattering cross-section of the inclusion in the piezoelectric mediums is given. In Section 5, with the
retention of just the terms of lowest order in the series for the two polarizations, a formal solution in the
low frequency is developed for the scattering problem of an ellipsoidal inclusion in the piezoelectric matrix.
Particular attention is paid to the scattering cross-section and its approximate solution is given. In Section
6, numerical results are given for a single spheroidal BaTiO3-inclusion in a PZT-5H-matrix, including the
limiting cases for the scattering cross-sections of a flat disc, rigid circular disc, long fiber and rigid fiber.
2. Polarization equations

For inhomogeneous piezoelectric media, the constitutive equations can be written as
rijðx
*
; tÞ ¼ cijklðx

*
; tÞuk;lðx

*
; tÞ þ elijðx

*
; tÞu;lðx

*
; tÞ

Diðx
*
; tÞ ¼ eiklðx

*
; tÞuk;lðx

*
; tÞ � eilðx

*
; tÞu;lðx

*
; tÞ

ð2:1Þ
where x
* ¼ ðx1; x2; x3Þ, c is the elastic moduli tensor, e is the piezoelectric moduli tensor and e is the permit-

tivity of the dielectric material. u and u are the elastic displacement and the electric potential. D and r are
the electric displacement and the elastic stress tensor, respectively.
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It is noteworthy that the material constants satisfy the following symmetric relations
cijkl ¼ cjikl ¼ cijlk ¼ cklij
elij ¼ elji; eil ¼ eli

ð2:2Þ
The substitution of Eq. (2.1) into the elastic field equations and Maxwell�s equation leads to a coupled sys-
tem of differential equations as follows:
ðcijkluk;l þ eliju;lÞi þ fj ¼ ðqjkuk;tÞ;t
ðeikluk;l � eilu;lÞ;i � q ¼ 0

ð2:3Þ
in which q is the material�s density, f is the body force tensor, q is density of free electric charges.
In order to simply the formulations presented above, the following notations are introduced (Pan and

Tonon, 2000),
uI ¼
ui I ¼ 1; 2; 3

u I ¼ 4

�
ð2:4Þ

riJ ¼
rij J ¼ 1; 2; 3

Di J ¼ 4

�
ð2:5Þ

CiJKl ¼

cijkl J ;K ¼ 1; 2; 3

elij J ¼ 1; 2; 3;K ¼ 4

eikl J ¼ 4;K ¼ 1; 2; 3

�eil J ;K ¼ 4

8>>><>>>: ð2:6Þ

F J ¼
fj J ¼ 1; 2; 3

�q J ¼ 4

�
ð2:7Þ

qJK ¼
qjk J ;K ¼ 1; 2; 3

0 J ¼ 4 or K ¼ 4

�
ð2:8Þ
where uI, riJ, CiJKl, FJ and qJK are called the extended displacements, extended stress, extended body force
and extended momentum, respectively. It is note that in above Eqs. (2.4)–(2.8), and late on, the lowercase
and uppercase subscripts take on the range 1–3 and 1–4, respectively. In terms of this shorthand notation,
the equations of wave motion can be rewritten as
ðCiJKluK;lÞ;i þ F J ¼ ðqJKuK;tÞ;t ð2:9Þ
together with suitable initial and boundary conditions. The initial value problem will be considered for a
body occupying a region V, while the initial conditions will be that extended displacement u and momen-
tum q are prescribed throughout V at t = 0, and the boundary conditions will be of standard type such as:
either the extended force or extended displacement will be prescribed over oV for all positive t.

In inhomogeneous piezoelectric medium, the solution of equation (2.9) is very difficult to be obtained
directly. Now consider, a ‘‘comparison’’ body, occupying the same region V but having operator C0 and
q0. Substitution into the equation of motion (2.9) yields
ðC0
iJKluK;lÞ;i þ F J ¼ ðq0

JKuK;tÞ;t ð2:10Þ
It is useful to consider an adjoint problem for the field v and the corresponding ‘‘adjoint’’ operators are C*
and q*, then gives
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ðC�
lKJivJ ;iÞ;l þ EK ¼ ðq�

KJvJ ;iÞ;t ð2:11Þ
where EK is the extended body force of an adjoint problem for the field v.
By use of Gauss� theorem, Eqs. (2.10) and (2.11) leads to the identity
Z 1

0

dt
Z
oV

dS½vJC0
iJKluK;lni � uKC

�
lKJivJ ;inl	 þ

Z 1

0

dt
Z
V
d x

*ðvJF J � uKEKÞ

¼
Z
V
d x

*½vJq0
JKuK;t � uKq�

KJvJ ;t	
1
t¼0 ð2:12Þ
In the derivation of Eq. (2.12), the relations
Z 1

0

dt
Z
V
d x

*ðvJ ;iC0
iJKluK;l � uK;lC

�
lKJlvJ ;iÞ ¼ 0Z 1

0

dt
Z
V
d x

*ðvJ ;tq0
JKuK;t � uK;tq�

KJvJ ;tÞ ¼ 0

ð2:13Þ
are used.
Now let G be the Green�s functions for the comparison body, their components satisfy the equations
ðC0
iJKlGKP ;lÞ;i þ dJPdðx

*�x
*0Þdðt � t0Þ ¼ ðq0

JKGKP ;tÞ;t ð2:14Þ
with homogeneous initial and boundary conditions. The first index of GKP ðx
*Þ denotes the component of the

extended Green�s displacements, while the second denotes the direction of the extended point force. The
Green�s functions represent the coupled elastic and electric response to the application of time-harmonic
point force or point charge.

And let G* be the adjoint Green�s function, having components to satisfy
ðC�
lKJiG

�
JQ;iÞ;l þ dKQdðx*�x

*00Þdðt � t00Þ ¼ ðq�
KJG

�
JQ;tÞ;t ð2:15Þ
with the corresponding adjoint boundary conditions. Application of identity (2.12) to G and G* then gives
G�
PQðx

*0; t0; x
*00; t00Þ ¼ GPQðx

*00; t00; x
*0; t0Þ ð2:16Þ
The above equation shows that the useful adjoint Green�s function G* may be obtained from the Green�s
function G, which has more direct physical meaning.

With this background, we employ the extended field u that exists in the original body to produce two
polarizations
siJ ¼ ðCiJKl � C0
iJKlÞuK;l; pJ ¼ ðqJK � q0

JKÞuK;t ð2:17Þ

relative to the comparison medium. The extended stress and the extended momentum in the original body
may now be given in the forms
riJ ¼ siJ þ C0
iJKluK;l; qJKuK;t ¼ q0

JKuK;t þ pJ ð2:18Þ

and substitution of (2.18) into the equation of motion (2.9) leads to
ðC0
iJKluK;lÞ;i þ F J þ siJ ;i � pJ ;t ¼ ðq0

JKuK;tÞ;t ð2:19Þ
Application of the identity (2.12) to the field u defined by (2.19) and G* yields
uQðx
*00; t00Þ ¼ �

Z
dt

Z
V
d x

*
G�

JQ;iðx
*
; t; x

*00; t00ÞsiJ ðx
*
; tÞ � G�

jQ;tðx
*
; t; x

*00; t00Þpj

h i
þ u0Qðx

*00; t00Þ ð2:20Þ
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in which Z Z Z Z

u0Qðx

*00; t00Þ ¼ dt
V
d x

*
G�

JQðx
*
; t; x

*00; t00ÞF J ðx
*
; tÞ � dt

oV
dS uKC

�
lKJiG

�
JQ;inl � G�

JQ½C0
iJKluK;l þ siJ 	ni

n o
þ

Z
V
d x

*
G�

jQðx
*
; 0; x

*00; t00Þ½ðq0
jkuk;lÞðx

*
; 0Þ þ pjðx

*
; 0Þ	 � ukðx

*
; 0Þðq�

kjG
�
jQ;tÞðx

*
; 0; x

*00; t00Þ
n o

ð2:21Þ

Eq. (2.20) shows that u is the exact solution of the given boundary value problem, but for the comparison
body rather than the original; it should be noted that this interpretation is valid only if momentum rather
than velocity is regarded as prescribed initially. Comparing Eqs. (2.20) and (2.21) with the Willis�s results
(Willis, 1980) for the inhomogeneous anisotropic case, it can be proved that the present formations can be
reduced to the pure elastic case when the piezoelectric moduli and the permittivity tend to zero, i.e, both the
lowercase and uppercase subscripts in Eqs. (2.20) and (2.21) only take on the range 1–3.

Symbolically, therefore
u ¼ �Ss �Mp þ u0 ð2:22Þ

where
ðSsÞQðx
*
; tÞ ¼

Z
dt0

Z
V
dx
*0SQiJ ðx

*
; t; x

*0; t0ÞsiJ ðx
*0; t0Þ ð2:23Þ

ðMpÞQðx
*
; tÞ ¼

Z
dt0

Z
V
dx
*0MQjðx

*
; t; x

*0; t0Þpjðx
*0; t0Þ ð2:24Þ
and
SQiJ ðx
*
; t; x

*0; t0Þ ¼
oG�

JQ

ox0i
ðx*0; t0; x

*
; tÞ ¼ oGQJ

ox0i
ðx*; t; x*0; t0Þ ð2:25Þ

MQjðx
*
; t; x

*0; t0Þ ¼ �
oG�

jQ

ot0
ðx*0; t0; x

*
; tÞ ¼ � oGQj

ot0
ðx*; t; x*0; t0Þ ð2:26Þ
Substitution of (2.22) into (2.18) gives the equations
ðC� C0Þ�1
iJQlsiJ þ ðSxÞQliJsiJ þ ðMxÞQljpj ¼ u0Q;l ð2:27Þ

ðq � q0Þ�1
jq pj þ ðStÞqiJsiJ þ ðMtÞqjpj ¼ u0q;t ð2:28Þ
where Sx, Mx, St and Mt are operators with kernels
ðSxÞQliJ ¼
o
2GQJ

oxlox0i
; ðMxÞQlj ¼ � o

2GQj

oxlot0
ð2:29Þ

ðStÞqiJ ¼
o
2GqJ

otox0i
; ðMtÞqj ¼ � o

2Gqj

otot0
ð2:30Þ
Eqs. (2.27) and (2.28), together with the formula (2.22), will be applied to the problem of scattering plane
wave by a single inclusion.
3. Scattering from an inclusion

In this section, the scattering problem will be considered based on equation (2.27) and (2.28). The matrix
will have the operator C and q, while the inclusion have the operator C* and q*. The comparison material
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will be taken as identical to the matrix, so that the polarizations s and p are non-zero only over the volume
V* occupied by the inclusion. The terms on the right-hand side of Eqs. (2.27) and (2.28) will be associated
with the incident plane wave
u0K ¼ UKe
�i½k0ð n

*0 � x
*Þþxt	 ð3:1Þ
where n0 is unit vector and the polarization U and wavenumber k satisfy
½k20LJKð n
*0Þ � x2qJK 	UK ¼ 0 ð3:2Þ
where
LJKð n
*0Þ ¼ CiJKln0i n

0
l ð3:3Þ
We consider now a harmonic oscillation in the homogeneous piezoelectric matrix with frequency x. A
steady-state solution will be sought, in which dependent s and p on t only through a factor e�ixt. Corre-
spondingly, time-reduced versions of operator S, M are required. Because the matrix is infinite, they are
obtained from the time-reduced Green�s function for an infinite body. The Green�s function G satisfies
CiJKl
o
2GKP ðx

*Þ
oxioxl

þ x2qJKGKP ðx
*Þ þ dJPdðx

*Þ ¼ 0 ð3:4Þ
This equation requires that G is an analytic function of x in the upper half of the complex x-plane. Since
the dynamic 3D Green�s functions is not available, the derivation of formulation will be presented in detail.

An application of the Radon transform defined by (A.1) to Eq. (3.4) gives
LJKðn
*Þ o

2

os2
þ x2qJK

� �bGKP ðsÞ þ dJPdðsÞ ¼ 0 ð3:5Þ
where
q ¼

q 0 0 0

0 q 0 0

0 0 q 0

0 0 0 0

26664
37775 ð3:6Þ
Eq. (3.5) can be decomposed as follows:
Ljkðn
*Þ o

2

os2
þ qx2djk

� �bGkpðsÞ þ Lj4ðn
*Þ o

2 bG4pðsÞ
os2

¼ �djpdðsÞ ð3:7Þ

Ljkðn
*Þ o

2

os2
þ qx2djk

� �bGk4ðsÞ þ Lj4ðn
*Þ o

2 bG44ðsÞ
os2

¼ 0 ð3:8Þ

L4kðn
*Þ o

2 bGkp

os2
þ L44ðn

*Þ o
2 bG4p

os2
¼ 0 ð3:9Þ

L4kðn
*Þ o

2 bGk4

os2
þ L44ðn

*Þ o
2 bG44

os2
¼ �dðsÞ ð3:10Þ
After some mathematical operations, the above equations become
Cjkðn
*Þ o2

os2
þ qx2djk

� �bGkp ¼ �djpdðsÞ ð3:11Þ
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Cjkðn
*Þ o

2

os2
þ qx2djk

� �bGk4 ¼ Lj4L�1
44 dðsÞ ð3:12Þ

o2 bG4p

os2
¼ �L�1

44 L4k
o2 bGkp

os2
ð3:13Þ

o2 bG44

os2
¼ �L�1

44 L4k
o2 bGk4

os2
þ dðsÞ

" #
ð3:14Þ
in which
Cjkðn
*Þ ¼ Ljk � L�1

44 Lj4L4k ð3:15Þ

By transforming the coordinates to the bases of the eigenspaces of Cjkðn

*Þ, the system of inhomogeneous
Eqs. (3.11)–(3.14) can be reduced to a system of uncoupled 1-D Helmholtz equations. The eigenvetors
Ejm corresponding to the eigenvalues km are defined by
Cjkðn
*ÞEkm ¼ kmEjm ðm ¼ 1; 2; 3Þ ð3:16Þ
It is noted that the summation convention does not applied the suffix, m, wherever km, and later on, cm and
km appear. It is easily proved that Cjkðn

*Þ is symmetric and positive matrix. Therefore, the eigenvetors are
real value and can be taken as orthonormal bases, and the eigenvalues are positive real value. Hence, there
exist
EjmEjn ¼ EmjEnj ¼ dmn ð3:17Þ

The transformation of bGkp to the new bases is given by
bG�

mp ¼ Ekm
bGkp ð3:18Þ
The inverse transformation is then given by
bGkp ¼ Ekn
bG�

np ð3:19Þ
Both sides of Eq. (3.19) are multiplied by Ejm, then substituting (3.19) into (3.11) yield the result
km þ qx2
� �bG�

mp ¼ �EpmdðsÞ ðm ¼ 1; 2; 3Þ ð3:20Þ
The solution of above equations is given by Wang and Achenbach (1995)
bG�
mp ¼

iEpm

2qc2mkm
eikmjsj ð3:21Þ
where cm and km are the phase velocities and wave numbers defined by
cm ¼
ffiffiffiffiffiffiffiffiffiffi
km=q

p
; km ¼ x=cm ð3:22Þ
By applying Eq. (3.19) and (3.21), the solution of bGkp is obtained as
bGkp ¼
X3

m¼1

iEkmEpm

2qc2mkm
eikmjsj ð3:23Þ
The inverse transform of (3.23) is
Gkpðx
*Þ ¼ 1

8p2

X3

m¼1

Z
jn*j¼1

EkmEpm

2qc2m
2dðn* 
 x*Þ þ ikmeikmjn

* 
 x*j
h i

dXðn*Þ ð3:24Þ
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Obviously, the above formulations for Green�s functions can be reduced to the results for the pure aniso-
tropic elastic case (Willis, 1980). By use of Eqs. (3.16) and (3.17), it is easily verified that
X3

m¼1

EkmEpm

qc2m
¼ C�1

kp ð~nÞ ð3:25Þ
Taking advantage of Eq. (3.13) and (3.23), the solution for G4pðx
*Þ is given by
G4pðx
*Þ ¼ �1

8p2

Z
jn*j¼1

o
2 bG4p

os2
dXðn*Þ ¼ �1

8p2

X3

m¼1

Z
jn*j¼1

L4kEkmEpm

2L44qc2m
2dðn* 
 x*Þ þ ikeikmjn

* 
 x*j
h i

dXðn*Þ ð3:26Þ
Just as the process of seeking for the solutions for Gkp and G4pðx
*Þ, similar mathematic operations can be

applied for Gk4 and G44, the following results can be obtained:
Gk4ðx
*Þ ¼ �1

8p2

X3

m¼1

Z
jn*j¼1

EkmEjmLj4

2L44qc2m
2dðn* 
 x*Þ þ ikmeikmjn

* 
 x*j
h i

dXðn*Þ ð3:27Þ
and
G44ðx
*Þ ¼ 1

8p2

X3

m¼1

Z
jn*j¼1

L4kEkmEjmLj4

2L44qc2m
2dðn* 
 x*Þ þ ikmeikmjn

* 
 x*j
h i

dXðn*Þ ð3:28Þ
From Eqs. (3.24) and (3.26)–(3.28), it is noted that the integral representation for Green�s displacements
can be taken as the sum of the static contribution (when x = 0) and the correction by the dynamics.
For the regular dynamic part, the integral can be evaluated numerically without any difficulty. For the sin-
gular part, the integral can be treated as the method proposed by Pan and Tonon (2000) for the static case.
Corresponding representations for the operators appearing in Eqs. (2.25), (2.26), (2.29) and (2.30) are ob-
tained as follows:
Skip ¼
�1

8p2

X3

m¼1

Z
jn*j¼1

EkmEpmni
2qc2m

2d0ðn* 
 x*Þ � k2msgnðn
* 
xÞeikmjn

* 
 x*j
h i

dXðn*Þ

S4ip ¼
1

8p2

X3

m¼1

Z
jn*j¼1

L4kEkmEpmni
2L44qc2m

2d0ðn* 
 x*Þ � k2msgnðn
* 
xÞeikmjn

* 
 x*j
h i

dXðn*Þ

Ski4 ¼
1

8p2

X3

m¼1

Z
jn*j¼1

EkmElmLl4ni
2L44qc2m

2d0ðn* 
 x*Þ � k2msgnðn
* 
xÞeikmjn

* 
 x*j
h i

dXðn*Þ

S4i4 ¼
�1

8p2

X3

m¼1

Z
jn*j¼1

L4kEkmElmLl4ni
2L44qc2m

2d0ðn* 
 x*Þ � k2msgnðn
* 
xÞeikmjn

* 
 x*j
h i

dXðn*Þ

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
ð3:29Þ
and
ðSxÞkjip ¼
�1

8p2

X3

m¼1

Z
jn*j¼1

EkmEpmninj
2qc2m

2d00ðn* 
 x*Þ � 2k2mdðn* 
 x*Þ � ik3me
ikmjn

* 
 x*j
h i

dXðn*Þ

ðSxÞ4jip ¼
1

8p2

X3

m¼1

Z
jn*j¼1

L4kEkmEpmninj
2L44qc2m

2d00ðn* 
 x*Þ � 2k2mdðn* 
 x*Þ � ik3me
ikmjn

* 
 x*j
h i

dXðn*Þ

ðSxÞkji4 ¼
1

8p2

X3

m¼1

Z
jn*j¼1

EkmElmLl4ninj
2L44qc2m

2d00ðn* 
 x*Þ � 2k2mdðn* 
 x*Þ � ik3me
ikm n

* 
 x*j j
h i

dXðn*Þ

ðSxÞ4ji4 ¼
�1

8p2

X3

m¼1

Z
jn*j¼1

L4kEkmElmLl4ninj
2L44qc2m

2d00ðn* 
 x*Þ � 2k2mdðn* 
 x*Þ � ik3me
ikm n

* 
 x*j j
h i

dXðn*Þ

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
ð3:30Þ



H. Ma, B. Wang / International Journal of Solids and Structures 42 (2005) 4541–4554 4549
and
MKp ¼ �ixGKp ð3:31Þ

ðMxÞKip ¼ ixSKip ð3:32Þ
and
ðStÞkiP ¼ �ixSkiP ð3:33Þ

ðMtÞkp ¼ �ixMkp ð3:34Þ
Once Eqs. (2.27) and (2.28) have been solved for the scattering problem, the total field in (2.22) can be ob-
tained. From equation (2.22), the total field can be considered as the sum of the incident field u0 and a scat-
tered field v. A scattered field v is
v ¼ �Ss �Mp ð3:35Þ
4. Scattering cross-section

In this section, we will focus on the scattering cross-section of the inclusion, both for its intrinsic interest
and for its use in estimating attenuation in the inhomogeneous piezoelectric mediums. The scattering cross-
section Q of inclusion is defined as the ratio of the total mean rate of outflow of energy associated with
scattered field v to the mean energy flux in the direction n0 associated with the incident wave.

Assuming the extend stress riJ is derived from the scattered field v, the mean flux of energy associated
with v has components
Y i ¼ � 1

4
ixðriJ�vJ � �riJ vJÞ ð4:1Þ
where the superposed bar denotes complex conjugation. The mean rate of energy radiation E out of a vol-
ume V is then defined by
E ¼
Z
oV
Y in0i dS ð4:2Þ
Using Gauss� theorem, we get
E ¼ � 1

4
ix

Z
V
ðriJ ;i�vJ � �riJ ;ivJ þ riJ�vJ ;i � �riJ vJ ;iÞd x

* ð4:3Þ
but
riJ ;i þ ixpJ þ x2qJKvK ¼ 0 ð4:4Þ

and
riJ ¼ CiJKlvK;l þ siJ ð4:5Þ

It follows, therefore, that
E ¼ � 1

4
ix

Z
V
ðsiJ�vJ ;i � �siJ vJ ;iÞd x

*� 1

4
x2

Z
V
ðpj�vj þ �pjvjÞd x

* ð4:6Þ
in above equation, the polarizations s and p are non-zero only over the volume V 0 occupied by the inclu-
sion. Eq. (4.6) also shows that only the imaginary part of the produced siJ�vJ ;i and the real part contribute
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pj�vj to E. Taking into account Eq. (3.2), the mean energy flux in the direction n0 associated with the plane
wave u0 can be expressed as follows
Y 0 ¼ xk0
2

CiJKln0i n
0
lUJUK ¼ x3

2k0
qJKUJUK ¼ qx3

2k0
UjUj ð4:7Þ
Then the scattering cross-section Q is given
Q ¼ E=Y 0 ð4:8Þ
5. The Rayleigh limit

The system of equations (2.27) and (2.28) is difficult to solve explicitly but they can be simplified consid-
erably in the low frequency range, or Rayleigh limit. Retention of lowest term reduces the equations to
½ðC� � CÞ�1 þ C	iJQlsiJ ¼ �ikUQn0l x
* 2 V 0 ð5:1Þ

ðq� � qÞ�1pq ¼ �ixUq x
* 2 V 0 ð5:2Þ
In above equations, if the inclusion�s diameter is much smaller than the wavelengths of incident fields, s and
p can be considered as constants over the inclusion. C1 in Eq. (5.1) is the static limit of operator Sx, with
kernel
C1
ijql ¼

1

8p2

X3

m¼1

Z
jn
*

j¼1

EqmEjmninl
qcm

d00ðn* 
 x*ÞdXðn*Þ ð5:3Þ

C1
ij4l ¼

�1

8p2

X3

m¼1

Z
jn
*

j¼1

L4qEqmEjmninl
L44qcm

d00ðn* 
 x*ÞdXðn*Þ ð5:4Þ

C1
i4ql ¼

�1

8p2

X3

m¼1

Z
jn
*
j¼1

EqmEjmLj4ninl
L44qcm

d00ðn* 
 x*ÞdXðn*Þ ð5:5Þ

C1
i44l ¼

1

8p2

X3

m¼1

Z
jn
*
j¼1

L4qEqmEjmLj4ninl
L44qcm

d00ðn* 
 x*ÞdXðn*Þ ð5:6Þ
and reduces to a constant tensor P; for an ellipsoid xTATAx = k2, the expression of P is derived in Appen-
dix B.

It follow from (5.1) that, to the lowest order, s is the static response to the incident field, while (5.2)
shows that the momentum p is just that produced by inclusion being carried along by the incident wave.
Hence, for an ellipsoidal inclusion, in the Rayleigh limit
siJ ¼ �ik ðC� � CÞ�1 þ P
h i�1

iJQl
UQn0l ð5:7Þ
and for any inclusion
pq ¼ �ixðq� � qÞUq ð5:8Þ

Now we evaluate the scattering cross-section of an ellipsoidal inclusion, it can be obtained from (4.6) and
(4.8), together with (3.35). Considering that s is constant over the inclusion, in the first integral term in (4.6)
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only the even part of �vJ ;i has a contribution. Therefore equation (3.35) shows that only imaginary and even
parts of Sx andMx contribute to Q. From (3.32) and (3.29),Mx is odd, while (3.30) shows that the relevant
term in Sx is the one involving the exponential term. Furthermore, to the lowest order, the exponential term
may be approximated to unit. This will simplify the results further. Similar considerations apply to the sec-
ond integral term in (4.6), the asymptotic expression for Q is obtained
Q ¼ 4pa1a2a3
3

� �2 x4

2Y 0
siJ ðDSxÞQliJ�slQ þ pkDMkp�pp

h i
ð5:9Þ
for an ellipsoid with semi-axes a1, a2, a3, where
ðDSxÞqlij ¼ 1
16p2

X3

m¼1

Z
jn
*

j¼1

EqmEjmninl
qc5m

dXðn*Þ

ðDSxÞ4lij ¼ �1
16p2

X3

m¼1

Z
jn
*
j¼1

L�1
44 L4kEkmEjmninl

qc5m
dXðn*Þ

ðDSxÞqli4 ¼ �1
16p2

X3

m¼1

Z
jn
*

j¼1

L�1
44 EqmEkmLk4ninl

qc5m
dXðn*Þ

ðDSxÞ4li4 ¼ 1
16p2

X3

m¼1

R
jn
*
j¼1

L�1
44

L4kEkmEpmLp4ninl
qc5m

dXðn*Þ

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
ð5:10Þ
and
DMkp ¼
1

16p2

X3

m¼1

Z
jn
*
j¼1

EkmEpm

qc3m
dXðn*Þ ð5:11Þ
6. Numerical examples

The scattering cross-section of a variety of inclusions in anisotropic elastic matrix has been considered by
Willis (1980). In this section, the scattering cross-section is calculated for the composite, which is consisted
of a single BaTiO3-inclusion and a PZT-5H-matrix. The matrix and the inclusion are transversely isotropic
piezoelectric material with the symmetry axis x3, and their non-zero elements of material constants are
BaTiO3-inclusion:
c�11 ¼ 166 GPa; c�33 ¼ 162 GPa; c�12 ¼ 77 GPa; c�13 ¼ 78 GPa

c�44 ¼ 43 GPa; e�31 ¼ �4:4 Cm�2; e�33 ¼ 18:6 Cm�2; e�15 ¼ 11:6 Cm�2

e�11 ¼ 11:2� 10�9 CN�1m�2; e�33 ¼ 12:6� 10�9 CN�1m�2; q� ¼ 5700 Kgm�3
PZT-5H-matrix:
c11 ¼ 126 GPa; c33 ¼ 117 GPa; c12 ¼ 55 GPa; c13 ¼ 53 GPa

c44 ¼ 35:5 GPa; e31 ¼ �6:5 Cm�2; e33 ¼ 23:3 Cm�2; e15 ¼ 17:0 Cm�2

e11 ¼ 15:1� 10�9 CN�1 m�2; e33 ¼ 13:0� 10�9 CN�1 m�2; q ¼ 7500 Kg m�3
In the examples, we suppose the incident wave propagates in the direction normal to the axis x3 and the
plane shear (longitudinal shear, SH) wave polarized in the x3-direction is considered. Thus
b ¼ x
k0

¼ c44e11 þ e215
qe11

� �1=2

ð6:1Þ
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n0 ¼ ½cos h; sin h; 0	T ð6:2Þ

where h is the angle between the propagating direction of incident wave and the axis x1.

Also, the energy flux relevant to the incident wave can be expressed as
Y 0 ¼ qx3

2k0
UjUj ¼

qbx2

2
¼ qb3k20

2
ð6:3Þ
Here, Uj is taken as
½U 1;U 2;U 3	 ¼ ½0; 0; 1	 ð6:4Þ

U4 is obtained by the following equation:
U 4 ¼
eiklnlni
ejpnjnp

Uk ¼
e15
e11

ð6:5Þ
We consider an inclusion having the shape of spheroid (a,a, ea), with the following special cases:

Case 1. A spherical inclusion, with e = 1.
Case 2. A flat disc inclusion, with e = 1/50.
Case 3. A flat disc cavity, with e = 1/50, and [(C* � C)�1 + P]�1 reduces to [P � C�1]�1.
Case 4. A rigid disc, with e = 1/50, and [(C* � C)�1 + P]�1 reduces to P�1.
Case 5. A long fibre, with e = 50.
Case 6. A rigid fibre, with e = 50, and [(C* � C)�1 + P]�1 reduces to P�1.

The numerical results of the scattering cross-section for the special cases are represented in Table 1,
which are normalized with respect to k40a

6. It is worth to point out that the results are independent of
the angle h because the matrix is transversely isotropic.

In order to show the validity and feasibility of the relevant formulations, such as Eqs. (2.22), (5.7)–(5.9),
we let the piezoelectric materials� piezoelectric moduli and the permittivity equal to zero. In the piezoelectric
case, the lowercase and uppercase subscripts in Eqs. (2.22), (5.7)–(5.9) take on the range 1–3 and 1–4,
respectively. When both the lowercase and uppercase subscripts in these equations only take on the range
1–3, it means that the piezoelectric moduli and the permittivity tend to zero, i.e, These formulations can
easily be reduced to the corresponding formulations in Willis� paper (1980). The numerical results for cor-
responding purely elastic cases are presented in Table 2. The numerical results in Tables 1 and 2 show that
the cross-section Q depends upon the properties of the inclusions and matrix. The piezoelectric materials�
piezoelectric moduli and the permittivity may increase the Q that is higher than this in pure elastic case. The
1
ezoelectric matrix

Case 2 Case 3 Case 4 Case 5 Case 6

64 · 1018 7.702814 · 1012 9.532695 · 1012 9.156199 · 1012 9.294928 · 1021 5.028276 · 1023

2
astic matrix

Case 2 Case 3 Case 4 Case 5 Case 6

51 · 1017 3.611364 · 1012 5.028642 · 1012 4.758279 · 1012 7.119862 · 1020 9.524664 · 1022
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cross-section Q is one of factors governing the wave attenuation. It is noted that the Q showed in Table 1 is
the cross-section of a single inclusion and the energy flux term is calculated from the elastic moduli, piezo-
electric moduli and permitivity of matrix. When the formulation of the Q is used in composite piezoelectric
material with a lot of inclusions, those material parameters should be the overall moduli.
7. Conclusions

The goal of this paper is to provide the dynamic general solution for an infinite, piezoelectric medium
containing a single piezoelectric, ellipsoidal inclusion. The scattering problem is formulated in terms of inte-
gral equations (2.22), whose kernels are obtained from the Green�s functions for a comparison body. The
novel feature of Eq. (2.22) is the introduction of stress polarization and momentum polarization. In this
paper, the Random transform method is used for the dynamic Green�s functions. The most interesting
advantage of this transform is that it reduces a three-dimensional partial differential equation to a one-
dimensional partial differential equation. After the 1-D time harmonic wave problem is solved, the 3-D
Green�s function follows from the application of inverse transform. Finally, the asymptotic solution for
the scattering cross-section is derived in the Rayleigh limit.
Appendix A

Consider function f ðx*Þ defined in R3, the Radon transform of f ðx*Þ is defined as
f̂ ðs; n*Þ ¼ R½f ðx*Þ	 ¼
Z

f ðx*Þdðs� n
* 
 x*Þd x

* ðA:1Þ
where n
*
is a unite vector and d( ) is the one-dimensional Dirac delta. The Radon transform is an integration

of f ðx*Þ over all planes defined by n
* 
 x* ¼ s.

The inverse Radon transform defined as
f ðx*Þ ¼ R�½f̂ 00	 ¼ � 1

8p2

Z
jn
*

j¼1

f̂ 00ðn* 
 x*; n*ÞdXðn*Þ ðA:2Þ
in which
f̂ 00ðn* 
 x*; x*Þ ¼ o2f̂ ðs; n*Þ
os2

!!!!!
s¼n

* 
 x*
ðA:3Þ
Appendix B

For the static problem in the piezoelectric medium, the infinite-body Green�s function G satisfies the fol-
lowing equation:
CiJKlGKP ;liðx
*Þ þ dJPdðx

*Þ ¼ 0 ðB:1Þ
A convenient representation for G is easiest obtained by employing the plane-wave expansion
dðx*Þ ¼
Z
jn
*
j¼1

d00ðn* 
 x*ÞdS ðB:2Þ
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We observe that
G�
KP ðn

* 
 x*Þ ¼ �ðCiJKlnlniÞ�1dJPdðn
* 
 x*Þ ðB:3Þ
satisfies the equation
CiJKlG
�
KP ;liðn

* 
 x*Þ þ dJPd
00ðn* 
 x*Þ ¼ 0 ðB:4Þ
Hence, the expression for G is given
GJKðx
*Þ ¼ 1

8p2

Z
jn
*
j¼1

ðCiJKlninlÞ�1dðn* 
 x*ÞdS ðB:5Þ
and
C1
pJKqðx

*Þ ¼ �GJK;pqðx
*Þ ¼ � 1

8p2

Z
jn
*
j¼1

nqnpL�1
JK ðn

*Þd00ðn* 
 x*ÞdS ðB:6Þ
Now we introduce the constant tensor P defined by Eshelby (1957) into piezoelectric ellipsoidal inclusion
(xTATAx < k2) problem, the constant tensor P is defined by
P ¼
Z

k<a
C1ðxÞdx ðB:7Þ
is independent of the value of a > 0. so that
PpJKq ¼ � 1

8p2

Z
jn
*

j¼1

npnqL�1
JK ðn

*ÞdS
Z

k<1

d00ðn* 
 x*Þd x
* ¼ 1

4p
Aj j�1

Z
jn
*

j¼1

npnqL�1
JK ðn

*ÞdS
nTðATAÞn
� �3=2 ðB:8Þ
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